Jupyter-based Physics Labs: Introducing Scientific Computing & Discovery

University of British Columbia

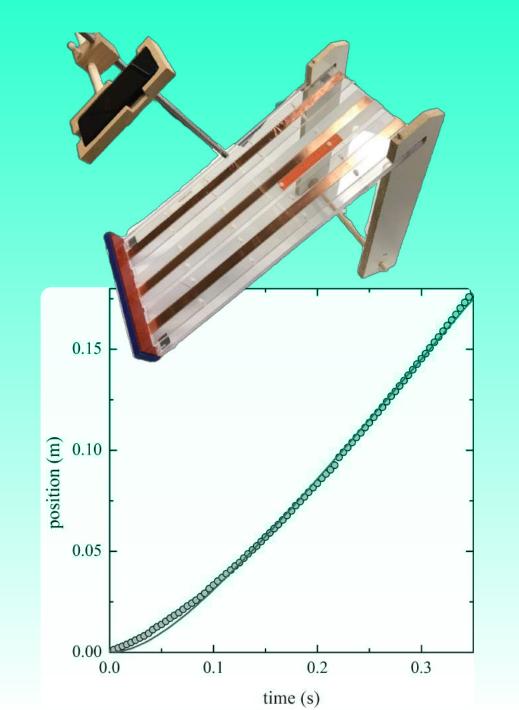
Kelowna, BC, Canada

S. Alderson, G. Cornell, A. Menard, I. Kennedy, E. Launer, A. Nikou, J. Sawchuk, A. Zavahir, J. Andrews, F. Moosvi, H. Nakahara, & J. Bobowski 🕒

Motivation

- 1. There is a growing body of evidence that physics labs designed to reinforce classroom instruction are less effective than labs that aim to teach experimental practices [1, 2]. Furthermore, structured labs have been shown to deprive students from actively engaging in the majority of the cognitive tasks that practicing experimental physicists routinely encounter [1].
- 2. Physics reviewed its undergraduate programs in W2020. One clear outcome was that all science students require some minimal competency in scientific computing. This conclusion came as a result of consultation with the physics faculty and staff, surveys of recent graduates, and evaluation other Canadian physics programs.

Top Left: In Lab 8, when a strong magnet is slid down a conducting track, it experiences a braking force due to the induced Eddy currents.


Bottom Left: Students test models designed for the cases of:

1. zero braking 2. weak braking

tion.

- 3. moderate braking 4. strong braking
- The plot shows weak-braking data. The magnet reaches terminal velocity after a brief period of accelera-

Right: An array of copper coils and LEDs are used to show the counterflowing Eddy currents that precede and follow the sliding magnet.

Objectives

- 1. Create activities that give students more authentic lab experiences by allowing them to discover new knowledge rather than confirming concepts from lecture.
- 2. Give students a soft introduction to scientific computing using Python & Jupyter notebooks. Achieve this goal without requiring complex syntax or coding skills.

Example "Discoveries"

- Labs 1 & 2: A pendulum's period depends on it's oscillation amplitude.
- Labs 4 & 5: While electrical resistance is $\propto A^{-1}$, the resistance to fluid flow through a pipe is $\propto A^{-2}$ [3].
- Lab 7: At our geographical position, Earth's magnetic field is nearly vertical [4].
- Lab 8: Students are introduced to magnetic braking, an application of Faraday's law that we don't explicitly cover in lecture [5].

Interactive Jupyter Notebooks

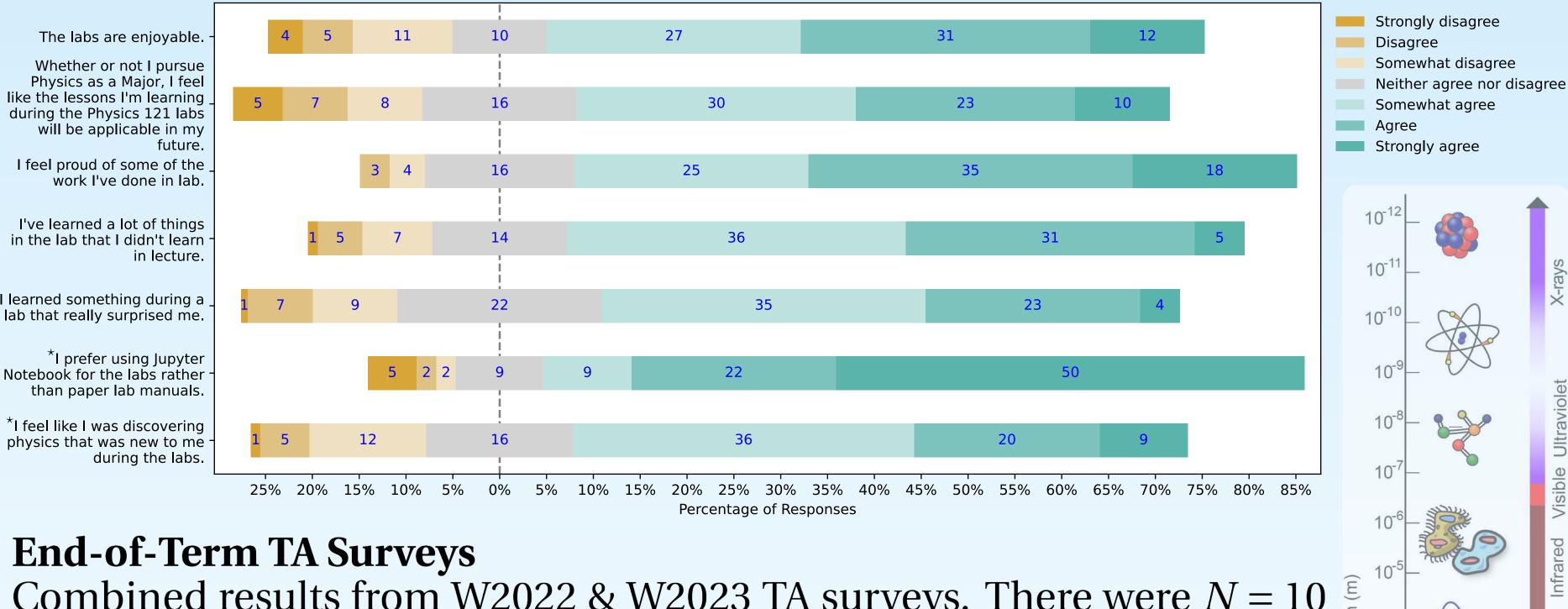
The Jupyter notebook-based lab manuals have a number of unique advantages which include:

- Access to powerful pre-built Python packages such as NumPy, Pandas, Matplotlib, SciPy, & SymPy.
- When used with UBC's Jupyter Open, there's no cost to students and no software to install.
- Allows novice users to execute code line-by-line or block-by-block.
- Detailed notes and instructions can be interspersed between lines of code using Markdown. Can include figures, gifs, videos, and links to useful resources.
- Instructors can provide pre-written functions that students can use when analyzing their data and presenting their results.
- completing the labs and pre-lab assignments. • Allows TAs to focus on providing more detailed and formative feedback related to the learning

• Ability to incorporate auto-grading which provides students with instant feedback as they are

- objectives. • When needed, sets of simulated data can be generated with each student getting a unique dataset.
- Lab work is submitted electronically and feedback is provided electronically.
- Students access the lab manuals and pre-lab assignments simply by clicking a link in Canvas.

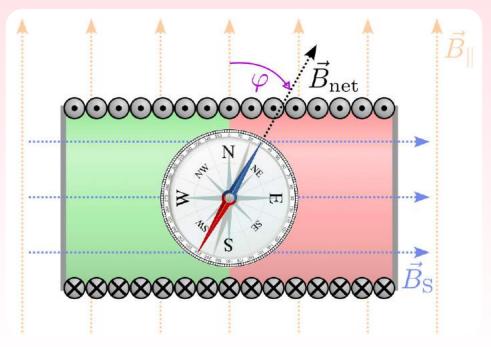
Context

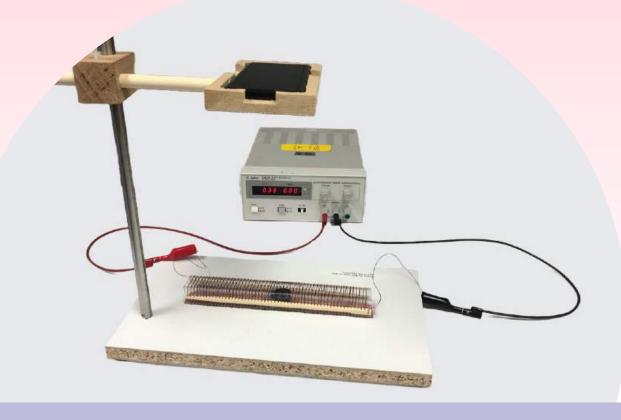

The Jupyter notebook-based labs have been implemented in our W2022 & W2023 offerings of PHYS 121. This is a term-2 course in electricity & magnetism intended for students planning to pursue a degree in the physical sciences and typically has approximately 150 students and 10 lab sections. The labs are run by a mixture of undergraduate and graduate TAs.

To assess the effectiveness of the new labs, we collected data from multiple data sources in both W2022 and W2023:

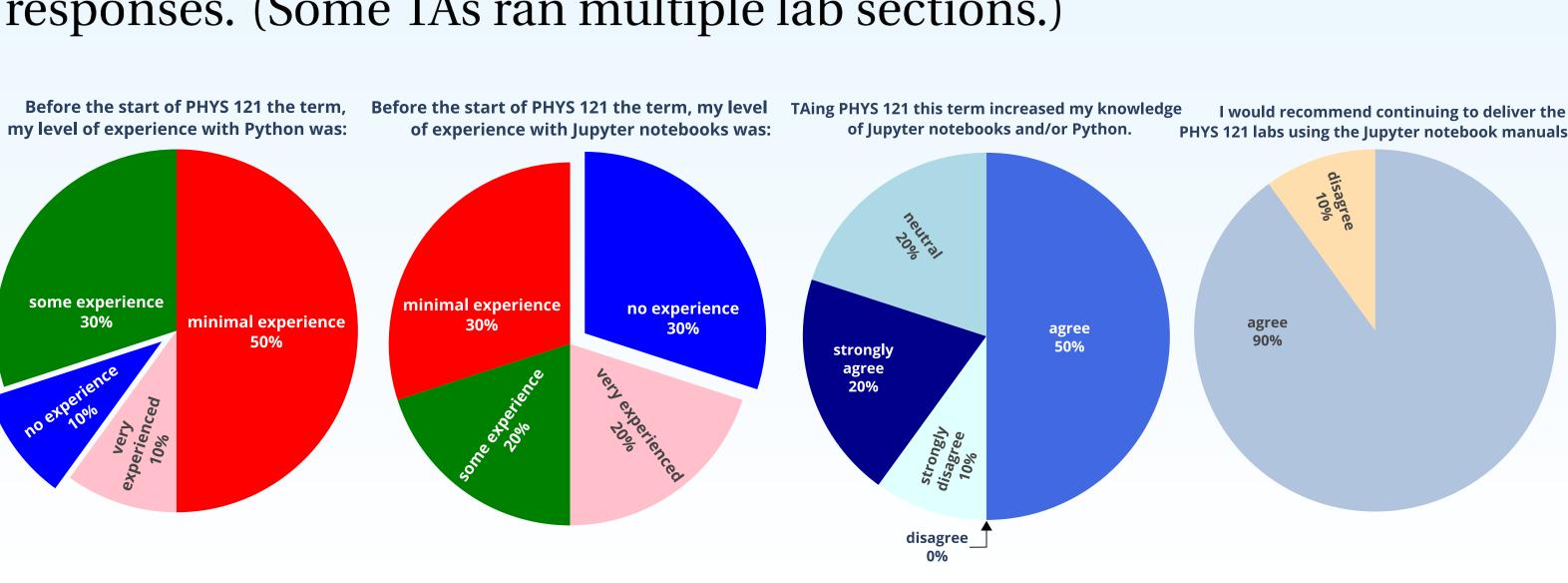
- Midterm and end-of-term surveys of all students.
- Mini-surveys of TAs after each lab.
- End-of-term surveys of TAs.
- Open feedback from students available at the end of each lab and pre-lab.
- End-of-term semi-structured interviews [6].
- A complete log of responses entered by each student in each lab and pre-lab.

End-of-Term Student Surveys


The figure below shows the combined student responses to several questions taken from the W2022 and W2023 end-of-term surveys. The blue numbers in each bar correspond to the percentage of respondents that selected that option. For the first 5 questions, there were N = 188 responses collected. Because they were only included in the W2023 survey, there were N = 96 responses for the last two questions marked by a \star .



Semi-Structured Interviews


Each of the W2022 interview transcripts were independently coded by 4 different researchers. The most common themes to emerge from the interviews included:

- The Jupyter notebook-based lab manuals were liked.
- Data collection was tedious.
- Acquired new skills and learned concepts not covered in the lecture.
- Some technical issues were encountered.
- The pre-labs were helpful.

Combined results from W2022 & W2023 TA surveys. There were N=10responses. (Some TAs ran multiple lab sections.)

Open Feedback

Student comments from the open feedback that reflect some of the same themes extracted from the interview data:

- Prelab 1: "Being able to generate graphs this easily is very convenient. Although there's a learning curve to this software, I think it will work very well for our labs.'
- Lab 1: "Great lab, crazy amount of trials but it was interesting to see the affect it had on the experiment."
- Lab 2: "I like that this lab develops and expands upon the previous lab and your results, encouraging more critical and scientific think-
- Lab 4: "This lab was dope. We are stoked about learning the interface as well as cool physics concepts. cheers homie."
- Lab 5: "Good lab! This lab gave me some good insights for how a capacitor charges and discharges..."
- End of term: "I enjoyed how this lab was based more in actually thinking about what is happening in the lab and why instead of all the lab time being taken up by calculations."

[4] Stewart, Phys. Teach. **38**, 113 (2000). [5] Molina-Bolívar and Abella-Palacios, Eur. J. Phys. 33, 697 (2012). [6] Galleta, Mastering the Semi-Structured Interview and Beyond.