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Motivation Data

Data Science is a relatively new discipline which Our data consists of course descriptions scrapped from

IS constantly evolving to keep up with the rapid undergraduate Data Science programs across the United

development of contemporary technologies. States and Canada. Common NLP text preprocessing

While we expect common modalities to arise in anitobs foronto techniques were employed before fitting the LDA model.

Data Science curriculum, we anticipate a level of -

variability that would not necessarily be present ¢ Results

In more established disciplines. » The K=3 topic solution uncovered three themes which
. . appear to map to: Programming, Statistics, and

ObJECtIVES - _— - Mathematics (see Figure 3)

We aim to discover overarching themes and * The K=8 topic solution produced clusters which we

topics in Data Science curricula to better identified as: Statistics, Programming, Machine

understand commonalities and highlight Learning, Linear Algebra, Databases, Calculus,

differences between undergraduate programs in - Susiness Communication and Algorithms (Figure 1)

Data Science. With this information we can: Figure 3: Word Clouds _ counting

computational

Figure 1: University-Topic Composition K = 8 The relative proportion of each topic at each University Topics composition for the 8 T tion
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Figure 2: Visualization of the fitted LDA model using LDAvis for K =8 , _ _ _ |
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A visualization of the LDA 8-topic model fitted to our corpus of Data Science course descriptions. An interactive version of by UBC Vancouver (or UBC Okanagan) students via the Aspire-2040
this visualization created using LDAVvis3 can be found here Learning Transformations Fund.
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