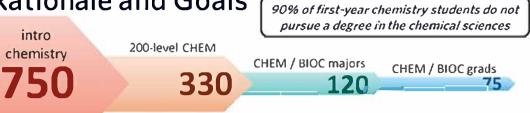
Flexible and Flipped Delivery Modules for First-Year Chemistry

gas pressures / concentration

spectroscopy


Lewis structures / resonance

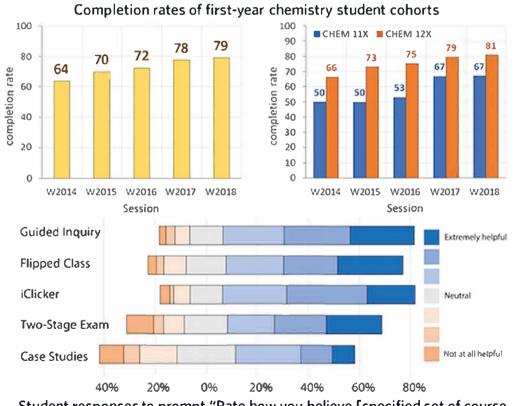
bond strengths

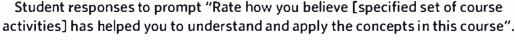
ozone and CFCs

Tamara K. Freeman, W. Stephen McNeil, Barber Faculty of Science, Department of Chemistry

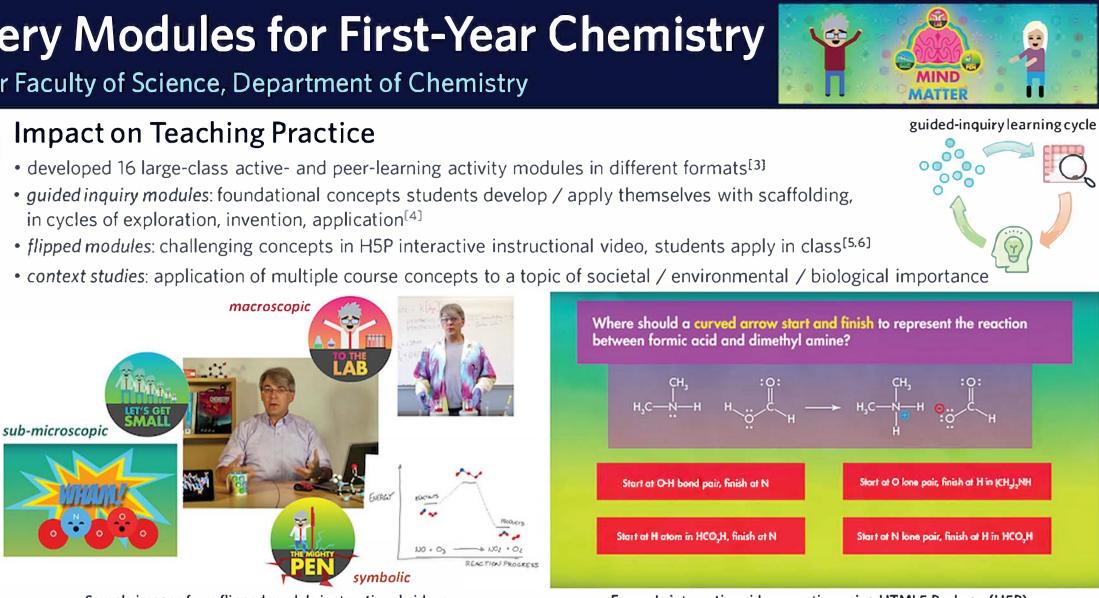
Rationale and Goals

Attrition of students in chemical sciences at UBC Okanagan


- An introductory chemistry course should:
- teach a last chemistry course, not a first one
- prepare scientifically-informed, critically-thinking citizens
- explain relevance of chemistry to global and societal issues^[1]


Impact on Curriculum

- revised objectives / concepts / topics for CHEM 11X/12X
- explicit cognitive and affective learning objectives
- thematic context of UN Sustainable Development Goals^[2]


Impact on Student Learning

- learning modules used with > 6500 students since 2016
- 2015 2019 overall success rates +23%, among CHEM 11X students (with CHEM 11 entry) +34%
- student perception of conceptual learning favourable for all module formats

- in cycles of exploration, invention, application^[4]

Sample images from flipped module instructional videos

hybrid orbitals

ring strain

bond polarity

ntermolecular forces

penicillin

Course topics applied in context study activities with applications to UN SDGs

References / Bibliography / Acknowledgements

1. The Chemical Element: Chemistry's Contribution to Our Global Future; Garcia-Martinez, J., Serrano-Torregrosa, E., Eds.; Wiley-VCH: 2011.

Le Châtelier principle

thermochemistry

Hess' Law

bond strengths

reaction mechanisms

catalysts

nitrogen cycle

pK, / acid-base reactions

nucleophiles / electrophiles

curved arrow notation

S. 2 reactions

DNA MTase

42

- 2. Petillion, R. J.; Freeman, T. K.; McNeil, W. S. "The United Nations Sustainable Development Goals as a Thematic Framework for an Introductory Chemistry Curriculum" J. Chem. Educ. 2019, 96, 2845-2851.
- 3. Freeman, S. et al. Active learning increases student performance in science, engineering, and mathematics. Proc. Nat. Acad. Sci. 2014, 111, 8410–8415.
- 4. Abraham, M. R. Inquiry and the Learning Cycle Approach. In Chemist's Guide to Effective Teaching; Pienta, N. J., Cooper, M. M., Greenbowe, T. J., Eds.; Prentice-Hall: 2005; pp 41-52.
- 5. Seery, M. K. Flipped learning in higher education chemistry: emerging trends and potential directions. Chem. Educ. Res. Proct. 2015, 16, 758-768.
- 6. Bokosmaty, R.; Bridgeman, A.; Muir, M. Using a Partially Flipped Learning Model To Teach First Year Undergraduate Chemistry. J. Chem. Educ. 2019, 96, 629-639.
- 7. Petillion, R. J.; McNeil, W. S. "Johnstone's Triangle as a Pedagogical Framework for Flipped-Class Instructional Videos in Introductory Chemistry" J. Chem. Educ. 2020, 97, 1536-1542.

UBC

Example interactive video question using HTML5 Package (H5P)

Outcomes and Future Work

• 2 publications^[2,7] and >20 conference presentations / workshops, 4 further publications forthcoming

 UN SDGs as thematic framework promotes affective learning H5P interactivity in instructional videos improves student cognitive learning and engagement

dramatic improvement in student completion rates

• Open Educational Resource grant will be used to develop and disseminate open access versions of all learning modules

This project was supported by the Aspire Learning and Teaching Fund